Skip to Content
Business Trends
Author's profile photo Timo ELLIOTT

The Future of Machine Learning-Enabled Analytics

Updated February, 2018: Watch the replay of Timo and Andy’s #askSAP Live Chat, and see the others on the SAP Analytics Facebook video page.

Predictive technology isn’t new, but today, algorithms really are taking over! Looking to the future, predictive analytics, artificial intelligence, and machine learning are going to completely transform the way companies do business.

SAP Analytics Evangelist Andy Bitterer and I are going to discuss the trends, the biggest challenges, and potential use cases of these technologies on February 7, 2018, at 8am Pacific Time (5pm CET) as part of an #askSAP Live Chat on Facebook. Please join us, and bring your own questions!

Here are just some of the areas we’ll be exploring:

  • Why, after being the “next big thing” in analytics for at least two decades, Predictive Analytics and Machine Learning are now such hot industry trends.
  • How machine learning is enabling “self-driving” processes that automate the kinds of complex repetitive decision-making that up until now only humans could do.
  • The biggest new opportunities for these technologies in today’s organizations.
  • The easiest ways to can get started with machine learning.

In particular, we’ll be talking about what machine learning can bring to traditional analytics, including:

  • More intelligent data preparation. Over 90% of average business intelligence projects involve gathering, cleaning, and joining data from different sources. Algorithms can help automate some of this work, especially for more casual business users.
  • Natural-language interfaces. BI interfaces that correctly interpret user questions in everyday language via voice or chat, such as “what’s the revenue per customer this month compared to last month?” and are able to provide data in sentence form, such as “deal value is 20% lower than average for the enterprise segment.”
  • Automatic outlier detection. Algorithms can spot exceptions and unusual events automatically, such as: “days sales outstanding is the western region is currently 90% higher than the average over the last six months.” This helps enable the long-term dream of true exception-driven management.
  • Intelligent segmentation. Statistical techniques can automatically create groups and segments that make sense based on the data, rather than arbitrarily-defined thresholds. For example, by automatically segmenting crime data into age ranges that match real-world trends, such as 0-14, 14-23, 23-35… rather than 0-10, 20-30, and so on.
  • Causality and significance detection.  We can use algorithms to determine the key influencers on profitability, or to check whether an uptick in sales is a real inflection point rather than just random variation.
  • Advanced data sharing. Just as Amazon recommends book purchases based on what we’ve read in the past, algorithms can help identify reports and data that we might be interested in “people like you also liked this dashboard.”

We look forward to hearing your questions on February 7th—please tell us if you can make it by clicking “going” or “interested” on this page!

Assigned Tags

      You must be Logged on to comment or reply to a post.
      Author's profile photo Former Member
      Former Member

      Am just seeing this now. Is there a replay/podcast on the above conversation?

      KR, Alexandra

      Author's profile photo Kristin Kufeldt
      Kristin Kufeldt

      Hi Alexandra, Yes, you can watch the replay of this Live Chat at

      You can see all our Live Chats on our SAP Analytics Facebook page under the Videos Playlist