SAP Data Services builds momentum with BigQuery

Thanks to its key benefits like low startup costs and fast deployment time, there is no doubt about why Cloud-based analytics like Google BigQuery is rapidly gaining popularity. However, this does not mean that companies will completely abandon their on premise data centers due to security concerns and other factors. For this reason, many companies have chosen the hybrid approach to implement their big data analytics solution which requires bi-directional ETL capabilities to move and transform data among on premise and in the cloud applications. With the upcoming release in November 2015, you can rely on SAP Data Services to do just that.

 

Support native Google BigQuery data store since DS 4.2 SP4

SAP Data Services features a rich set of out-of-the-box transformations, with over 80 built-in functions including native text data processing, data masking, and data quality features that allows users to prepare only the relevant and trusted information before loading into BigQuery tables. The software supports the JSON data format, thus you can use the same designer UI to create dataflow that defines the process for loading data in flat structure or with nested/repeated fields into BigQuery in a drag-and-drop manner.

 

For example, using a Data Quality transform to improve and load data from SAP ERP tables into Google BigQuery can be accomplished with just few simple steps. Below is a diagram to illustrate how to create a dataflow in DS to perform required transformations, create hierarchical data as needed and load it into BigQuery for analytics.

 

BQ_DC_DF.PNG

 

Diagram 1 – an example to load data from multiple tables from SAP ERP to Google BigQuery 

 

Enhance SQL Transform to read data from BigQuery data store in DS 4.2 SP6

You can write any BigQuery SQL statements such as selections, projections, joins, etc. directly in the SQL Transform for any complex data retrieval operations. By doing it this way, the software will pushdown all BigQuery SQL statements to the database layer. As a result, all queries are executed by the native Big Query analytics engine giving optimal performance even if you are working with complex data from multiple tables that contain deeply nested structures.

 

For example, suppose you want to find the number of children each person has in personsData.json, you can use SQL transform to aggregate across children and repeated fields within records and nested fields.

SQL_Transform.png

 

After you click the “Update schema” button, Data Services will automatically populate the output schema which obtains column information returned by the select statement.

 

Schema.png

And you will get the following result:

Results.png

 

As you can see below, the results are the same when run through the BigQuery Web UI.

 

New Query.png

In summary, SAP Data Services offers a single, unified platform that allows you to move, transform, cleanse, and enrich data in any format from almost any data source into Google BigQuery, and vice versa. Please refer to the Supplement for Google BigQuery user guide and the HANA Academy tutorial video to discover how to connect SAP Data Services to Google BigQuery for step-by-step instructions.

What to do if I have suggestions?

We understand ETL is a vital component in the success of any Big Data Analytics Solutions, and are committed to serving you with our very best. If you have great ideas on how to improve our Data Services product, please submit your ideas in SAP Idea Place. We would love to hear from you!

To report this post you need to login first.

1 Comment

You must be Logged on to comment or reply to a post.

  1. Raja Mahesh Musunoori

    Hi Lofan Leung,

    Thanks for this Blog, I am from Demo Solutions Pre-Sales group and would want to showcase this integration functionality with SAP Data Services as we have few customers asking for the same. Now, the questions is more or less is there a possibility to get a demo account without being asked for payment information like Credit Card ??

    I appreciate your time and look forward for your response.

    BR, Mahesh

    (0) 

Leave a Reply