The following recaps an ASUG webcast delivered by Hemant Puranik, Connie Chan, and Lars Rueter. For more details, you can always attend an ASUG pre-conference session on Big Data or Information Governance.

Integration use cases

As we talk through the EIM wheel of Architect to Archive, we always mention that the tools are integrated in pretty darn cool ways. The next question is always How? This session will show how some of the key master data products are integrated: Data Services and Data Quality , SAP Information Steward and SAP Master Data Governance (called MDG from here on out).

The main use cases addressed are these:

  • Data integration and provisioning
  • Data remediation
  • Validation and improvement
  • Data monitoring and alerting

Information policies inform many of these areas, too.

Provisioning process

Use case: connect an additional system to your master data governance hub.

DI_Prov_process.png

On the left are the source systems, and on the right is the master data hub. When doing so, you want to make sure only accurate and clean data is moving into the hub.

  • Extract the master data from the business systems in flat files and then load these flat files into MDG without any changes.
  • Use the Enterprise Service Bus to load data into MDG.
  • Use SAP Migration Workbench to load data into MDG.

All of these options take the data as is, without any cleaning or transformation. You should clean, consolidate, and check against governance rules. To do this, you should use the Consolidation and Data Quality Services. Our suggestion is Information Steward to inspect the data, and then Data Services to cleanse the data.

If you already have data in your MDG hub, then you need to extract data from the hub before you can find duplicates, cleanse, and then re-load into the hub. This is shown by the Extractor Framework box on the right. The focus of this session, though, is the Consolidation framework.

DI_Prov_MDG.png

Provisioning: Profile and assess quality

DI_Prov_profile.png

Here Information Steward is helping you understand your data, and then build the validation rules that can be used in Data Services and MDG.

Provisioning: Extract, cleanse, improve, and auto-merge records

DI_Prov_Cleanse.png

Once in Data Services, you can extract from multiple sources, enrich, cleanse, and find matches. These transformations are done automatically based on rules, not one-at-a-time. In some cases, you’ll want to create a bucket of records that you need to manually review.

When you have a large data load, you can automatically cleanse and match a large portion of the data. For those manual review records, you can have the data stewards interact inside of Information Steward to make those decisions.

Provisioning: Review and consolidate best records

DI_Prov_review.png

Again, this process is for the initial load of a large group of records that may end up in MDG. As individual records come into MDG, you would use the governance workflows inside of MDG.

Provisioning: Load master data into MDG

DI_Prov_loadMDG.png

You can load into MDG from Data Services. The Data Import Framework of MDG is used during the data load into the master data hub. Data can be loaded into the active area and into the staging area. If you consolidate the data before the upload, you normally need to present the data in IDOC/SOA message format for the Data Import Framework (for example MATMAS IDOC for Material). In addition, you can prepare a separate file for key-mapping information if you have created golden records with Data Services. By using custom converters, you can even upload the data in CSV format. For more details, check this link:


Architecture of the File Upload Framework:

/wp-content/uploads/2014/03/data_import_fmwk_407143.png

You can use the Data Import Framework for all MDG domains. This option always uses a file-based interface and is the most flexible way to do a mass load. For the MDG domains Business-Partner, Supplier, Customer, Material and Financials you can use web services to load data, but that method does not offer the flexibility, performance and error handling offered by the Data Import Framework. For a mass load of data, you should stick to the file-based interface.

Provisioning: Refine master data in MDG and distribute

The final step is to refine the master records inside of MDG and distribute them to the subscribing systems, using the MDG framework.

Remediation and Scorecard integrations

We need data remediation inside of MDG when business rules change. We offer a UI that combines Information Steward scorecarding with MDG workflow processes.

Scorecard_remediation_MDG.png

Here you would start at the scorecard and then work back to the individual records that were failing the rules. For example, when currencies change, MDG could be configured to only accept Euros for currency as new records come in. But all of the existing records would still need to be fixed, which is where you would need data quality remediation.

Data Quality Remediation provides the process-integration of identifying erroneous master data in a data quality tool and its correction in MDG. Start with detecting the data quality issues inside of Information Steward.  From there, you partition the objects and star the remediation process with MDG. Also in MDG, you’d remedy the data quality issues, so you can get to corrected data.

Remediation: Failed records

Notice that Business Client has the Information Steward scorecard embedded.

Failed_records1.png

In this case, we are drilling down to the red areas on the scorecard. At the bottom, you’ll see the records that have caused the issue.

/wp-content/uploads/2014/03/failed_records2_404806.png

Now we can mark the records that can be fixed together.

/wp-content/uploads/2014/03/failed_records3_404807.png

With those records selected, we create a change request. At that point, the standard workflow will kick in to take care of these records.

Remediation example: Data quality

MDG_customizing.png

The Connector implementation is connecting to Information Steward, and you need the dashboard URL to embed the scorecard inside of the
Business Client UI. We have a SAP Rapid Deployment Solutions that provides this implementation between MDG and Information Steward.

Quality and enrichment integrations

How can these tools then work together on validation during the Creation process?

Process flow archetype

/wp-content/uploads/2014/03/process_archetype_404809.png

Notice that this archetype starts with maintenance, but validation checks are run throughout the process. We check against back-end ERP rules (since MDG is on top of ERP, we leverage these already-existing checks), and also Data Services matching, enrichment, and addressing checks. We call out to these external services in MDG.


For example, these enrichment spots are where you can call Information Steward validations. Follow this process:

  1. Write a validation rule in Information Steward.
  2. Expose the validation rule in Data Services as a web service.
  3. In MDG, call the Data Services web services job in an enrichment spot.


However, it does not work the other way. You cannot expose a validation rule in ERP in Data Services and Information Steward.


There is also an option to connect your own external services.

Current solution

You can use Data quality to check for duplicates, execute validations, and for address enrichment. These capabilities are supported out-of-the-box.

  • Prevent creation of duplicates for increased effectiveness and efficiency
    • Checked early and embedded in the process
    • High detection quality of matching using Enterprise Search or Data Services
  • Validations
    • Re-use of existing validation logic in ERP
    • Custom validations can be modeled and programmed (e.g. code lists, simple checks, or modeled rules via BRF+)
  • Address Enrichment
    • Simple check and selection lists
    • Integration with content provided by Data Services
    • Automatically adding Tax Jurisdiction Code re-using existing interfaces / providers

DQM_current.png

Val_BRF.png

DQ framework for data enrichment spots

  • Data Enrichment Spots
    • Flexible framework to define enrichment spots
    • Is used by SAP for e.g. Address Validation / Enrichment and will be used for further spots in future
    • Can be used by customers to define further enhancement spots (e.g. D&B services)

You can use enrichment spots to provide your own implementation for validation. For example, when creating a material, you can call an enrichment spot to enhance the information the user entered or perform a standard check against an external provider.

MDG_enrichment.png

In this way, you can re-use the business rules created in Information Steward or Data Services directly within MDG.

Data monitoring and alerting

/wp-content/uploads/2014/03/monitoring_alerting_404816.png

Here we have a MDG hub. We have created consistent and compliant data on the hub, and then distribute to connected business systems. They all receive this clean data. But then not all systems can be locked down, so master data can be changed in one of the downstream systems. MDG will not notice this. This is how inconsistency can happen in your landscape. (Notice the red boxes in these now non-compliant systems.) What is even worse is that now end-to-end business processes that go across several systems might now use this inaccurate data.

One way to address this is to use Information Steward. Define the information policies and relevant rules. Then monitor master data from all of these systems against the rules specified in Information Steward. You can then view a dashboard that shows if any of these systems are no longer meeting the rules. React on these problematic records with the Data Quality remediation outlined above.

You can see that there are many integration points between these tools, and we are developing more all of the time. Are there other use cases you are wondering about?

To report this post you need to login first.

9 Comments

You must be Logged on to comment or reply to a post.

  1. Pooj Khandelwal

    Hi ,

    Thanks for this valuable inputs !! I can think of record unmerge scenario which is not covered in the above discussion . When we consolidate the records we are loosing on the original data . Due to some error or because of incorrect business rules , there can be a need to retrive original records . How can this be made possible ?

    (0) 
    1. Niels Weigel

      SAP Information Steward provides the ability to call the embedded DQ Scorecard via a URL. You have to integrate the URL into your SAP MDG, like you can cut and past the URL directly into your WebBrowser and will get the DQ Scorecard then within your WebBowser.

      You have to deal then with the logon to the SAP Information Steward DQ Scorecard (which is a IS USer Credential then).

      Niels

      (0) 
  2. Thomas Gaub

    Thanks for this summarization.

    For me still unclear is the cleansing case for data already loaded into MDG.

    It is menstioned right a the beginning of the article:

    “… If you already have data in your MDG hub, then you need to extract data from the hub before you can find duplicates, cleanse, and then re-load into the hub. …”

    The cleansing of the data will be done in IS/DS, using all check rules, auto corrections and deduplicate algorithms defined there.

    But how can the data be locked in MDG meanwhile, to prevent manual modifications in parallel that would be overwritten by reloading the cleansed data from IS/DS?

    The only way to do this I can imagine is to lock the user accounts in MDG. But this would lock the whole system and not only the relevant records under inspection.

    Another question is about the identified duplicates? Is the flag “Mark for deletion” already set for these records in IS/DS automatically and uploaded into MDG with the reload of the data?

    Thomas

    (0) 
  3. anitha ediga

    Great Document  with details to  integrate different sources.Can you please let me know if you have any  document on Information Steward  to integrate  AS400/iseries files generated in xml format into MDG Domains.

    Thanks with regards

    Anitha

    (0) 
  4. Abhishek Ghosh

    Very Informative…If I just consider the Consolidation framework how is data loaded into Staging Area handled? Is a change request created for a batch , say for example 100K records and then it goes via a mass approval process? Or does the data get auto-approved and move into the Active Area. I would assume that the initial load from a legacy system(s) wouldn’t require a separate approval process and hence should go directly to the Active Area no matter whichever option is chosen-

    Thanks,

    Abhishek

     

     

    (0) 

Leave a Reply